JAGUAR LAND ROVER DEMONSTRATES ALL-TERRAIN SELF-DRIVING TECHNOLOGY

12 July 2016

Jaguar Land Rover has demonstrated a range of innovative research technologies that would allow a future autonomous car to drive itself over any surface or terrain.

  • Jaguar Land Rover’s vision is to offer autonomous driving on any terrain
  • Next‑generation sensing technologies will be the eyes of future all‑terrain autonomous cars – artificial intelligence will take capability to the next level
  • Ultrasonic sensors will detect surface conditions five metres in front of the car and identify grass, gravel, sand and snow before the car drives over them
  • Automatically slow down when the car detects bumpy terrain or standing water ahead
  • World‑first demonstration of an ‘Off‑Road Connected Convoy’ using car‑to‑car communication to aid progress and enhance the driver experience

Jaguar Land Rover has demonstrated a range of innovative research technologies that would allow a future autonomous car to drive itself over any surface or terrain.

Jaguar Land Rover’s multi‑million pound Autonomous all‑terrain driving research project aims to make the self‑driving car viable in the widest range of real life, on‑ and off‑road driving environments and weather conditions.

Our all‑terrain autonomy research isn’t just about the car driving itself on a motorway or in extreme off‑road situations. It’s about helping both the driven and autonomous car make their way safely through any terrain or driving situation.

We don’t want to limit future highly automated and fully autonomous technologies to tarmac. When the driver turns off the road, we want this support and assistance to continue. In the future, if you enjoy the benefits of autonomous lane keeping on a motorway at the start of your journey, we want to ensure you can use this all the way to your destination, even if this is via a rough track or gravel road.

So whether it’s a road under construction with cones and a contraflow, a snow‑covered road in the mountains or a muddy forest track, this advanced capability would be available to both the driver AND the autonomous car, with the driver able to let the car take control if they were unsure how best to tackle an obstacle or hazard ahead. We are already world‑leaders in all‑terrain technologies: these research projects will extend that lead still further.

Tony Harper
Head of Research

JAGUAR LAND ROVER DEMONSTRATES ALL-TERRAIN SELF-DRIVING TECHNOLOGY

To enable this level of autonomous all‑terrain capability, Jaguar Land Rover’s researchers are developing next‑generation sensing technologies that will be the eyes of the future autonomous car. Because the sensors are always active and can see better than the driver, this advanced sensing will ultimately give a vehicle the high levels of artificial intelligence required for the car to think for itself and plan the route it should take, on any surface.

SURFACE IDENTIFICATION AND 3D PATH SENSING research combines camera, ultrasonic, radar and LIDAR sensors to give the car a 360 degree view of the world around it, with sensors so advanced that the car could determine surface characteristics, down to the width of a tyre, even in rain and falling snow, to plan its route.

The key enabler for autonomous driving on any terrain is to give the car the ability to sense and predict the 3D path it is going to drive through. This means being able to scan and analyse both the surface to be driven on, as well as any hazards above and to the sides of the path ahead. This might include car park barriers, tree roots and boulders or overhanging branches, as well as the materials and topography to be driven on.

Tony Harper
Head of Research

Ultrasonic sensors can identify surface conditions by scanning up to five metres ahead of the car, so Terrain Response settings could be automatically changed before the car drives from tarmac to snow, or from grass to sand. This will optimise all‑terrain performance, without loss of momentum or control.    

To complete the 3D path, branches overhanging a track, or a car park overhead barrier would also need to be identified to determine if the route ahead is clear. Overhead Clearance Assist uses stereo camera technology to scan ahead for overhead obstructions. The driver programmes the system with the vehicle’s height, which can include roof boxes or bicycles, and the car will warn the driver with a simple message in the infotainment touchscreen if there is insufficient clearance.

Sensors could also be used to scan the roughness of the road or track ahead and adjust vehicle speed. TERRAIN‑BASED SPEED ADAPTION (TBSA) uses cameras to sense bumpy terrain including uneven and undulating surfaces and washboard roads, potholes and even standing water. It is then intelligent enough to predict the potential impact of these surfaces on the car’s ride and automatically adjust speed to keep passengers comfortable.

Another key element of successful all‑terrain autonomous driving is the ability for vehicles to communicate with each other, especially if they are out of sight around a bend or on the other side of an off‑road obstacle.

In a world‑first off‑road demonstration, Jaguar Land Rover has connected two Range Rover Sports together using innovative DSRC (Dedicated Short Range Communications) technology to create an Off‑Road Connected Convoy. This wireless vehicle‑to‑vehicle (V2V) communications system shares information including vehicle location, wheel‑slip, changes to suspension height and wheel articulation, as well as All‑Terrain Progress Control (ATPC) and Terrain Response settings instantly between the two vehicles.

This V2V communications system can seamlessly link a convoy of vehicles in any off‑road environment. If a vehicle has stopped, other vehicles in the convoy will be alerted – if the wheels of drop into a hole, or perhaps slip on a difficult boulder, this information is transmitted to all of the other vehicles. In the future, a convoy of autonomous vehicles would use this information to automatically adjust their settings or even change their route to help them tackle the obstacle.

Or for the ultimate safari experience, cars following in convoy would be told by the lead car where to slow down and stop for their passengers to take the best photographs.

Tony Harper
Head of Research

Further information

To view a video of this story, please click here: 

TBSA video: https://youtu.be/4O5dbp9YROo

Surface ID: https://youtu.be/D4s96‑vSv4k

Connected Convoy: https://youtu.be/gfbHjf2qeJE

Main film: https://youtu.be/82‑p9W7OFhc

For broadcast quality assets, please click here:

https://www.broadcast.jaguarlandrover.com/stories/9872

For more information, please visit www.newsroom.jaguarlandrover.com or contact:

Nick O’Donnell,
PR Manager, Jaguar Land Rover Future Technology
M: +44 7825 115951
E: nodonne2@jaguarlandrover.com

Simon Bickerstaffe,
Senior Global Product Communications Officer, Jaguar Land Rover
M: +44 (0)7467 448 366
E: sbickers@jaguarlandrover.com

Liam O’Neill,
Jaguar Land Rover Technology Press Officer
M: +44 7469 021100
E:  loneill3@jaguarlandrover.com

 

Notes to Editors

Notes to editors:

 ·       Jaguar Land Rover employs 9,000 engineers and technologists based at two UK product development centres at Gaydon and Whitley, and at an Advanced Research Centre at the University of Warwick.

·       Over the past five years, Jaguar Land Rover has doubled sales and employment, more than tripled turnover and invested more than £12 billion in new product creation and capital expenditure.

·       Jaguar Land Rover produced more than 500,000 cars and commercial vehicles in 2015 at its three vehicle manufacturing plants in Solihull, Birmingham and Liverpool.